Single Loop Controller
 Models R35, R36

General

Model R35/R36 is a digital indicating controller featuring multi-range inputs and PID control system using new algorithms "RationaLOOP PID (Ra-PID)" and "Just-FiTTER".
Up to two control output points (this number of points may vary depending on the model) can be used, which are selectable from the relay contact, motor drive relay, and current.

Features

- Space saving design with a depth of 65 mm . The mask of the front panel is also only 5 mm thick.
- High accuracy of $\pm 0.1 \%$ FS and sampling cycle of 0.1 seconds
- Multi-range inputs are available for selection, where the input type can be freely changed among RTD, current, and voltage.
- The control method can be selected from any of the ON/OFF control and PID control using "RationaLOOP PID (Ra-PID) + Just-FiTTER".
- The heat/cool control is achieved by using two control output points and event outputs.

- The controller is applicable to the communication (3-wire RS-485) as optional.
- The control output types (relay, motor drive relay, and current) can be combined by using the control outputs 1 and 2.
- Event 3 points or 2 points (independent contact), CT input 2 points, DI 4 points, RSP inputs, and RS-485 can be combined to select.

Basic Function Block of Model R35/R36

Specifications

PV input	Input type	Multi-range of inputs; RTD, DC current and DC voltage 0.1 s			
	Input sampling time				
	Input impedance	DC voltage input: Min. $1 \mathrm{M} \Omega$ / DC current input: Max. 100Ω			
	Input bias	-1999 to +9999 or -199.9 to +999.9			
	Input bias current	RTD input	1 mA		
		DC voltage input	$0-5 \mathrm{~V}, 1-5 \mathrm{~V}$ range: $3.5 \mu \mathrm{~A}$ or less $0-10 \mathrm{~V}$ range: $7 \mu \mathrm{~A}$ or less		
	Display at burnout	RTD input	RTD burnout: Upscale + alarm display (AL01) A-wire burn out: Upscale + alarm display (AL01) B-wire burnout: Upscale + alarm display (AL01, AL03) C-wire burnout: Upscale + alarm display (AL01, AL03) 2 or 3 wires burnout: Upscale + alarm display (AL01, AL03)		
		DC voltage input	Downscale + alarm display (ALO2) However, the burnout cannot be detected for the 0 to 10 V range.		
		DC current input	Downscale + alarm display (ALO2) However, burnout cannot be detected for the 0 to 20 mA range.		
	Allowable input current	DC current input	Max. 30 mA		
	Allowable input voltage	DC current input:	Max. 4 V *Higher voltage (than 4 V) might cause input circuit failure.		
Motor feedback potentiometer input (R1 model)	Allowable resistance	100 to 2500Ω			
	Burnout detection	AL07 indication			
RSP input	Input type	Linear 0 to $20 \mathrm{~mA} / 4$ to 20 mA or Linear 0 to $5 \mathrm{~V} / 1$ to $5 \mathrm{~V} / 0$ to 10 V			
	Scaling	Possible in a range of -1999 to +9999 . Decimal point position is changeable.			
	Sampling cycle	0.1 s			
	Input impedance	DC voltage input: Min. $1 \mathrm{M} \Omega$ / DC current input: Max. 100Ω			
	Input bias current	0 to $5 \mathrm{~V}, 1$ to 5 V ranges: Max. $3 \mu \mathrm{~A} / 0$ to 10 V range: Max. $5 \mu \mathrm{~A}$			
	Display at burnout	DC voltage input	Downscale + AL06		
		DC current input	Downscale + AL06 (However, burnout cannot be detected for the 0 to 20 mA range.)		
	Allowable input voltage	DC current input:	Max. 4 V *Higher voltage (than 4 V) might cause input circuit failure.		
Indications and setting	PV, SP indication method	4-digit, 7-segment LED (PV: Upper green display, SP: Lower orange display)			
	Number of setting points	Max. 8 points			
	Setting method	$<, \vee$, or \wedge key operation at each digit			
	Setting range	Low to high limit value of the PV range (can be limited by SP low to high limit)			
	Multi-status indicator	Control output status, alarm, or RUN/READY status is indicated.			
	Indication accuracy	± 0.1 \%FS ± 1 digit			
	Indication range	See Table 1.			
Control output	Output type	Relay contact output		Motor drive relay output	Current output
	Control action	Time pro	I PID	Position proportional PID	Continuous PID
	Number of PID groups	Max. 8 groups			
	PID auto-tuning	Automatic PID value setting by limit cycle method. However, one of the following 3 control characteristics can be selected: - Standard • Quick disturbance response • Less up/down fluctuations of PV			
	Output rating	```Control output (N.O. side): 250 V AC/30 V DC, 3 A (resistive load) Control Output (N.C. side): 250 V AC/30 V DC, 1 A (resistive load) Service life: 50,000 cycles or more on N.O. side 100,000 cycles or more on N.C. side Min. switching specification: \(5 \mathrm{~V}, 100 \mathrm{~mA}\) Min. OFF time / ON time: 250 ms```		Contact type: N.O./N.C. contact (2 circuits) Contact rating: 250 V AC, 8 A (resistive load) Service life: 120,000 cycles or more Min. switching specifications: 24 V DC, 40 mA	Output type: 0 to 20 mA DC 4 to 20 mA DC Allowable load resistance: Max. 600Ω Output accuracy: ± 0.1 \%FS (± 1 \%FS for 0 to 1 mA) Output resolution: 1/10000
	Cycle time (s)	5 to 120		- -	-
	PID control	Proportional band (\%FS)		0.1 to 999.9	
		Integral time (s)		0 to 9999 or 0.0 to 999.9	
		Derivative time (s)		0 to 9999 or 0.0 to 999.9	
		Manual set (\%) -		-10.0 to +110.0	
	Just-FiTTER	Overshoot suppression coefficient 0		0 to 100	
	ON/OFF control	Differential gap (${ }^{\circ} \mathrm{C}$)		0 to 9999 or 0.0 to 999.9	
	Control operation selection	Direct action or reverse action			
	Heat/Cool control selection	Control output and Event output (Heat/Cool control is disabled when control output is motor drive relay			

Auxiliary output	Output type	Current output 0 to 20 mA DC or 4 to 20 mA DC			
	Allowable load resistance	Max. 600Ω			
	Output accuracy	± 0.1 \%FS (± 1 \%FS for 0 to 1mA)			
	Output resolution	1/10000			
External contact input (DI)	Number of inputs	Max. 4 points			
	Function	Up to 8 kinds of setting value (SP) selections, PID group selection, RUN/READY selection, AUTO/MANUAL selection, LSP/RSP selection, Auto tuning stop/start, Control action Direct/Reverse selection, SP ramp enable/disable, PV value hold, Max. PV value hold, Min. PV value hold, Timer start/stop, All DO latch cancellation, Advance operation, Step hold			
	Input rating	Dry contact or open collector			
	Min. detection holding time	0.2 s or longer			
	Allowable ON contact resistance	Max. 250Ω			
	Allowable OFF contact resistance	Min. $100 \mathrm{k} \Omega$			
	Allowable ON-state residual voltage	Max. 1.0 V			
	Open terminal voltage	5.5 V DC $\pm 1 \mathrm{~V}$			
	ON terminal current	Approx. 7.5 mA (at short-circuit), Approx. 5.0 mA (at contact resistance of 250Ω)			
Event	Number of output points	2 or 3 points (depending on the model)			
	Number of internal event settings	Up to 8 settings			
	Event type - shows that the ON/OFF is changed at this value. shows that the ON/OFF is changed at a point that 1 U is added to this value. U : minimum unit	PV high limit		PV low limit	
		Direct action	Reverse action	Direct action	Reverse action
		PV high/low limit		Deviation high limit	
		Direct action	Reverse action	Direct action	Reverse action
				$\xrightarrow{\text { HYS }} \stackrel{A}{ }$ ON SP + Main setting PV \longrightarrow	
		Deviation low limit		Deviation high/low limit	
		Direct action	Reverse action	Direct action	Reverse action
		SP high limit		SP low limit	
		Direct action	Reverse action	Direct action	Reverse action
		SP high/low limit		MV high limit	
		Direct action	Reverse action	Direct action	Reverse action
		MV low limit		MV high/low limit	
		Direct action	Reverse action	Direct action	Reverse action
		Heater burnout / Overcurrent		Heater short-circuit	
		Direct action	Reverse action	Direct action	Reverse action

Input Types and Ranges

Inputtype	C01 No.	Sensor type	Range (${ }^{\circ} \mathrm{C}$)	Range (${ }^{\circ} \mathrm{F}$)
RTD	41	Pt100	-200.0 to +500.0	-300 to +900
	42	JPt100	-200.0 to +500.0	-300 to +900
	43	Pt100	-200.0 to +200.0	-300 to +400
	44	JPt100	-200.0 to +200.0	-300 to +400
	47	Pt100	-100.0 to +200.0	-150 to +400
	48	JPt100	-100.0 to +200.0	-150 to +400
	49	Pt100	-100.0 to +150.0	-150 to +300
	50	JPt100	-100.0 to +150.0	-150 to +300
	51	Pt100	-50.0 to +200.0	-50 to +400
	52	JPt100	-50.0 to +200.0	-50 to +400
	53	Pt100	-50.0 to +100.0	-50 to +200
	54	JPt100	-50.0 to +100.0	-50 to +200
	55	Pt100	-60.0 to +40.0	-60 to +100
	56	JPt100	-60.0 to +40.0	-60 to +100
	57	Pt100	-40.0 to +60.0	-40 to +140
	58	JPt100	-40.0 to +60.0	-40 to +140
	59	Pt100	-10.00 to +60.00	-10 to +140
	60	JPt100	-10.00 to +60.00	-10 to +140
	61	Pt100	0.0 to 100.0	0 to 200
	62	JPt100	0.0 to 100.0	0 to 200
	63	Pt100	0.0 to 200.0	0 to 400
	64	JPt100	0.0 to 200.0	0 to 400
	67	Pt100	0.0 to 500.0	0 to 900
	68	JPt100	0.0 to 500.0	0 to 900

Inputtype	C01 No.	Sensor type	
Linear	81	0 to 10 mV	Sange
input	82	-10 to +10 mV	Sealing between -1999 and +9999.
	83	0 to 100 mV	
	86	1 to 5 V	
	87	0 to 5 V	
	88	0 to 10 V	
	89	0 to 20 mA	
	90	4 to 20 mA	

Conformed standards for input sensors

> RTD Pt100: JIS C 1604-1997
> JPt100: JIS C 1604-1989

* JIS: Japanese Industrial Standards

Handling Precautions

- Though the accuracy is $\pm 0.1 \% F S \pm 1$ digit, the accuracy varies according to the range.
The accuracy of the No. 55 to 62 and 81 is $\pm 0.15 \%$ FS for each range.
- For ranges with a decimal point, digit(s) after the decimal point is (are) displayed as well.

Model Selection Guide

1	II III	IV	V	VI VII VIII	Example: R35TR0UA1000				
1	II	III	IV	V VI	VII	VIII	Specifications		
Basic model No.	Mount -ing	Control output	$\begin{gathered} \text { PV } \\ \text { input } \end{gathered}$	Power supply Option 1	Option 2	Additional processing			Remarks
R35							Single Loop Controller with Mask size $48 \mathrm{~mm} \times 96 \mathrm{~mm}$		
R36							Single Loop Controller with Mask size $96 \mathrm{~mm} \times 96 \mathrm{~mm}$		
	T						Panel mounting type		
							Control output 1	Control output 2	
		R0					Relay contact output (N.O.)	Relay contact output (N.C.)	
		R1					Relay contact output for motor drive (open side)	Relay contact output for motor drive (close side)	With MFB
		C0					Current output	None	
		CC					Current output	Current output	
			U				Universal		
				A			Power: 100 to $240 \mathrm{~V} \mathrm{AC}, \mathrm{50/60Hz}$		
				1			Event relay output: 3 points		
				2			Event relay output: 3 points, Auxiliary output (current output)		
				4			Event relay output: 2 points (independent contact)		
				5			Event relay output: 2 points (independent contact), Auxiliary output (current output)		
				(Notes 1, 2)	0		None		
					1		Current transformer inputs: 2 points, Digital inputs: 4 points		
				(Notes 1, 2)	2		Current transformer inputs: 2 points, Digital inputs: 4 points, RS-485 communication		
				(Notes 1, 2)	3		Current transformer inputs: 2 points, Digital inputs: 2 points, RSP input		
				(Notes 1, 2)	4		Digital inputs: 2 points, RSP input, RS-485 communication		
						00	No additional processing		
						D0	Inspection Certificate provided		
						Y0	Complying with the traceability certification		

Note 1. Current transformer is optional (sold separately).
Note 2. When the control output is motor drive relay (Model R35TR1/R36TR1), the current transformer input is not applied. MFB input is applied.

Dimensions

Model R35

Model R36

Handling Precautions

Tighten the screws of the mounting bracket (accessory). When the mounting bracket is secured firmly so that no play exists, tighten the screws further by one turn to fix the bracket to the panel. If the screws are tightened excessively, this may cause the case to deform.

Panel cutout diagram

Model R35

Model R36

Handling Precautions

- When mounting three or more units of Model R35/R36 tightly in the horizontal direction, pay special attention so that the ambient temperature does not exceed $40^{\circ} \mathrm{C}$.

Part Names and Functions

(1) Display 1: Displays PV values (present temperature, etc.) or setting items.
(2) Display 2: Displays SP values (set temperature, etc.) or the set value of each setting item. When the display 2 shows the SP value, the "sp" lamp lights up. When the display 2 shows the manipulated variable (MV), the "out" lamp lights up.
(3) Mode indicators
man: Lights in MANUAL mode (manual operation mode).
rsp: Lights in RSP mode (remote setup input mode).
ev1 to ev3: Light when event relay output is ON
ot1, ot2: Light when control output is ON.
(4) Multi-status indicator:

Priority lighting condition and lighting status are combined in a group, and 3 groups can be set.
(5) [mode] key: Performs the preset operation when being pressed for 1 s or longer.
(6) [display] key: Changes the display contents in the operation display mode. Also changes the bank setup display back to the operation display.
(7) <, , , ^ keys: Increase/decrease numeric values, or shift digits.
(8) [para] key: Switches the display.
(9) [enter] key:

Starts to change setting values and fixes the entered values to change.

Terminal Connection Diagram

 Wiring of Model R35/R36

Precautions on the Use of Self-tuning Function

The final control devices must be turned on simultaneously with or prior to this product when the self-tuning function is to be used.

Precautions on Wiring

1. Internal isolation

Solid line portions "-_ " are isolated.
Dotted line portions "------" are not isolated.

Power supply		Internal circuit	Control output 1 Control output 2	
PV input				
CT input 1 CT input 2 MFB input			Auxiliary output	
		Event output 1 Event output 2 Event output 3	Event output 1 (Independent output)	
Digital input 1	Digital input 1			
Digital input 2				
Digital input 3	RS-485 Communication		Event output 2 (Independent	
Digital input 4 RS-485	RSP input			

Notes:

* Availability of input and output is based on a model.
* For independent contacts, event outputs 1 and 2 are isolated.

2. Preventive measures against noise for power supply

(1) Reduction of noise

Even though the noise is small, the noise filter is used to eliminate the effect of the noise as much as possible.

(2) Protection from large noise If a large amount of noise exists, use appropriate isolation transformer and line filter to eliminate the effect of the noise.

3. Noise sources in the installation environment and preventive measures

Generally, the following may be the noise sources in the installation environment:

Relay and contact, electromagnetic coil, solenoid valve, power supply line (particularly, 100 V AC or more), motor commutator, phase angle control SCR, radio communication device, welding machine, high-voltage ignitor, etc.

Preventive measures against fast rise noise

Use of CR filter is effective to prevent fast rise noise.
Recommended filter:
Azbil Corporation's Part No. 81446365-001
(Equivalent to 953M500333311 made by Matsuo Electric.)

4. Wiring precautions

(1) After taking the noise preventive measures, do not bundle the primary and secondary power cables together or put both power cables in the same conduit or duct.
(2) Keep the input/output and communication lines 50 cm or more away from the power lines and power supply lines having a voltage of 100 V AC or more.
Additionally, do not put these lines together in the same conduit or duct.

5. Inspection after wiring

After the wiring work has been completed, always inspect and check the wiring status. Great care should be taken since incorrect wiring may cause the product to malfunction or severe personal injury.

This product has been designed, developed and manufactured for general-purpose application in machinery and equipment. Accordingly, when used in the applications outlined below, special care should be taken to implement a fail-safe and/or redundant design concept as well as a periodic maintenance program.

- Safety devices for plant worker protection
- Start/stop control devices for transportation and material handling machines
- Aeronautical/aerospace machines
- Control devices for nuclear reactors

Never use this product in applications where human safety may be put at risk.
Install this product in the following locations.

- Common mode voltage for I/O excluding the power supply and relay contact output must satisfy the following. Voltage between the product and the ground: 33 V r.m.s. or less, 46.7 V peak or less
- Not high or low temperature/humidity.
- Free from sulfide gas or corrosive gas.
- Less dust or soot.
- Appropriately protected locations from direct sunlight, wind or rain.
- Less mechanical vibration and shock.
- Not close to the high voltage line, to welding machine or to electrical noise generating source.
- Minimum of 15 m away from the high voltage ignition device for a boiler.
- Less effect by magnetic.
- No flammable liquid or gas

Azbil Corporation

Building Systems Company

http://www.azbil.com/

